Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose theVortexParticleFlowMap (VPFM) method to simulate incompressible flow with complex vortical evolution in the presence of dynamic solid boundaries. The core insight of our approach is that vorticity is an ideal quantity for evolution on particle flow maps, enabling significantly longer flow map distances compared to other fluid quantities like velocity or impulse. To achieve this goal, we developed a hybrid Eulerian-Lagrangian representation that evolves vorticity and flow map quantities on vortex particles, while reconstructing velocity on a background grid. The method integrates three key components: (1) a vorticity-based particle flow map framework, (2) an accurate Hessian evolution scheme on particles, and (3) a solid boundary treatment for no-through and no-slip conditions in VPFM. These components collectively allow a substantially longer flow map length (3–12times longer) than the state-of-the-art, enhancing vorticity preservation over extended spatiotemporal domains. We validated the performance of VPFM through diverse simulations, demonstrating its effectiveness in capturing complex vortex dynamics and turbulence phenomena.more » « less
-
We propose Leapfrog Flow Maps (LFM) to simulate incompressible fluids with rich vortical flows in real time. Our key idea is to use a hybrid velocityimpulse scheme enhanced with leapfrog method to reduce the computational workload of impulse-based flow map methods, while possessing strong ability to preserve vortical structures and fluid details. In order to accelerate the impulse-to-velocity projection, we develop a fast matrix-free Algebraic Multigrid Preconditioned Conjugate Gradient (AMGPCG) solver with customized GPU optimization, which makes projection comparable with impulse evolution in terms of time cost. We demonstrate the performance of our method and its efficacy in a wide range of examples and experiments, such as real-time simulated burning fire ball and delta wingtip vortices.more » « less
-
This paper introduces a two-phase interfacial fluid model based on the impulse variable to capture complex vorticity-interface interactions. Our key idea is to leverage bidirectional flow map theory to enhance the transport accuracy of both vorticity and interfaces simultaneously and address their coupling within a unified Eulerian framework. At the heart of our framework is an impulse ghost fluid method to solve the two-phase incompressible fluid characterized by its interfacial dynamics. To deal with the history-dependent jump of gauge variables across a dynamic interface, we develop a novel path integral formula empowered by spatiotemporal buffers to convert the history-dependent jump condition into a geometry-dependent jump condition when projecting impulse to velocity. We demonstrate the efficacy of our approach in simulating and visualizing several interface-vorticity interaction problems with cross-phase vortical evolution, including interfacial whirlpool, vortex ring reflection, and leapfrogging bubble rings.more » « less
-
We propose a novel Particle Flow Map (PFM) method to enable accurate long-range advection for incompressible fluid simulation. The foundation of our method is the observation that a particle trajectory generated in a forward simulation naturally embodies a perfect flow map. Centered on this concept, we have developed an Eulerian-Lagrangian framework comprising four essential components: Lagrangian particles for a natural and precise representation of bidirectional flow maps; a dual-scale map representation to accommodate the mapping of various flow quantities; a particle-to-grid interpolation scheme for accurate quantity transfer from particles to grid nodes; and a hybrid impulse-based solver to enforce incompressibility on the grid. The efficacy of PFM has been demonstrated through various simulation scenarios, highlighting the evolution of complex vortical structures and the details of turbulent flows. Notably, compared to NFM, PFM reduces computing time by up to 49 times and memory consumption by up to 41%, while enhancing vorticity preservation as evidenced in various tests like leapfrog, vortex tube, and turbulent flow.more » « less
-
An official website of the United States government

Full Text Available